Problem: Let $S$ be a set containing $n$ elements. Find
$
\sum_{A \subseteq S} \sum_{B \subseteq S}|A \cap B|
$
Solution: Observe that for any subsets $A,B\subseteq S$, we have that
$
|A\cap B|
=\sum_{x\in S}\mathbf{1}_{\{x\in A\cap B\}}
=\sum_{x\in S}\mathbf{1}_{\{x\in A\}}\,\mathbf{1}_{\{x\in B\}}.
$
Hence
$
\sum_{A\subseteq S}\sum_{B\subseteq S}|A\cap B|
=\sum_{A,B\subseteq S}\sum_{x\in S}\mathbf{1}_{\{x\in A\}}\,\mathbf{1}_{\{x\in B\}}
=\sum_{x\in S}\sum_{A,B\subseteq S}\mathbf{1}_{\{x\in A\}}\,\mathbf{1}_{\{x\in B\}}.
$
But for each fixed $x\in S$,
$
\sum_{A\subseteq S}\mathbf{1}_{\{x\in A\}}
=\bigl|\{A\subseteq S : x\in A\}\bigr|
=2^{n-1},
$
since each of the other $n-1$ elements may freely be in or out of $A$. Likewise,
$
\sum_{B\subseteq S}\mathbf{1}_{\{x\in B\}}
=2^{n-1}.
$
Therefore
$
\sum_{A,B\subseteq S}\mathbf{1}_{\{x\in A\}}\,\mathbf{1}_{\{x\in B\}}
=\bigl(2^{n-1}\bigr)\bigl(2^{n-1}\bigr)
=4^{\,n-1}.
$
Summing over all $x\in S$ gives
$
\sum_{A\subseteq S}\sum_{B\subseteq S}|A\cap B|
=\sum_{x\in S}4^{\,n-1}
=n\,4^{\,n-1}.
$